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ABSTRACT

This study is intended to determine the spatially varying optimal time periods for calculating seasonal climate
normals over the entire United States based on temperature data at 344 United States climate divisions during
the period of 1931-1993. This is done by verifying the seasonal climate normals as a forecast for the same
season next year, The forecast skill is measured by the correlation between the predicted and observed anomalies
relative to the 30-yr normal. The optimal time periods are chosen to produce the highest correlation between the
forecasts and the observation.

The results indicate that generally (all seasons and all locations) annually updated climate normals averaged
over shorter than 30-yr periods are better than the WMO specified 30-yr normal (updated only every 10 years),
in terms of the skill in predicting the upcoming year. The spatial pattern of the optimal averaging time periods
changes with season. The skill of optimal normals comes from both the annual updating and the shorter averaging
time periods of these normals. Using optimal climate normals turns out to be a reasonably successful forecast
method. Utility is further enhanced by realizing that the lead time of this forecast is almost one year. Forecasts
at leads beyond one year (skipping a year) are also reasonably skillful.

The skill obtained from the dependent verification is lowered to take account of the degradation expected on
independent data.

In practice the optimal climate normals with a variable averaging period were found to be somewhat prob-
lematic. The problems had to do primarily with the temporal continuity and spatial consistency of the forecasts.
For the time being, a constant time period of 10 years is used in the operational seasonal temperature forecasts

809

for all seasons and locations.

1. Introduction

In meteorology, climatology and their applications
to many other fields, the term ‘‘climate normals’’ has
become standard. Nevertheless, the notion of a climate
normal is somewhat controversial (Kunkel and Court
1990). To many users, a climate normal may imply
that the climate is stationary and has no trends, in which
case it would only be a matter of sampling a long
enough (preferably infinite) period to determine the
normals as accurately as possible. However, it has been
known (or suspected) that the climate may not exactly
be constant, in which case normals should be calculated
from recent data only. Notwithstanding their ambigu-
ity, climate normals have been found useful in many
long-term planning applications. For example, crop
choices, agricultural practices, utility rates, etc., are
based in part on assumptions about climatic conditions
in the near future. For such purposes, climate normals
are often used as the best possible baseline ‘‘predic-
tion’” of the future climate. We place ‘‘prediction’” in
quotation marks because usually (in meteorology) pre-
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diction implies an ability to forecast departures from
normal with skill.

Then the question is: what are the optimal climate
normals in terms of their predictive skill? Here optimal
climate normals (OCN) are defined as the average over
the most recent K years, where X is selected such that
the K-year average gives the best prediction for the next
year. In other words, what is the best climate persist-
ence forecast for next winter (for example)? Is it last
winter’s value, or the average over the K most recent
winters? An OCN acts as a low-pass filter, finding a
characteristic timescale of variability and identifying
the associated signal. Because the climate is not sta-
tionary, a large K does not necessarily produce the low-
est errors in forecasts based on climate normals.

The traditional climate normals are based on a spec-
ified 30-yr period, which is updated at the start of each
decade (such as 1951-1980, 1961-1990, etc.), ac-
cording to WMO’s recommendation.’ That is, they are
““fixed”” 30-yr normals that are shifted forward once

'WMO has recommended only 1901-1930, 1931-1960, and
1961-1990 as normals, but the in-between 30-yr averages are so
common and in widespread use that they are treated here also as
‘WMO normals.
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344 U.S. Climate Divisions

FiG. 1. Maps of the 344 U.S. climate divisions. Here 17 climate divisions
(shaded) are excluded in the analyses due to data quality.

every 10 years. The advantage of following the WMO
recommendation is that it allows for universal usage of
an agreed upon standard of reference. Anomalies (de-
partures from the normal) can thus be used unambig-
uously to describe abnormally cold—warm years or sea-
sons. However, there is no obvious reason why the 30-
yr average would be the best climate prediction at all
places, for all weather elements. Indeed, many studies
have found that 30-yr normals have less predictive skill
than averages over the most recent K years, where K
< 30 (e.g., Court 1967-1968; Lamb and Changnon
1981; Dixon and Shulman 1984; Kunkel 1987).

The idea of OCN is not at all new. In fact, many
ideas about the use of optimal climate averages are as
old as climatology itself and were summarized in a se-
ries of scientific reports by Court (1967-1968). How-
ever, most previous studies were based on data at only
a few locations in the United States and rarely consid-
ered tests on independent data. In this study, we ex-
amine the entire continental United States to determine
the skill of the seasonal temperature forecasts based on
OCN, that is, based on persistence of the mean anomaly
over the most recent K years for the same season that
we are predicting. We also discuss the seasonal and
spatial distribution of K and test results on independent
data. Recently, we have started to apply OCN as one
of the prediction approaches in operational seasonal
temperature forecasts at the Climate Prediction Center
(CPC, formerly Climate Analysis Center) of the Na-
tional Center for Environmental Prediction (NCEP,
formerly National Meteorological Center) (Van den
Dool 1994). Problems encountered in operational prac-
tice are also considered and reported in section 8.

OCN provides a forecast with a lead time of almost
one year (more precisely the lead is nine months, e.g.,
we can predict the spring of 1997 at the end of spring
1996 or whenever the data for 1996’s spring are avail-
able). Seasonal forecasts at such a long lead are a rarity
so far. Because WMO normals are not updated every
year, OCN can yield higher predictive skill than WMO
normals both because K < 30 and because we average
over the most recent K years rather than over a period
of K years that ended up to 13 years ago. The problem
of the aging of the WMO normals has only recently
been considered (Angel et al. 1993).

What distinguishes this article from most previous
work on OCN is also an attempt to test the results on
independent data or, more generally, to determine an a
priori skill estimate. This turns out to be an unusually
difficult problem.

2. Data and definition

This study uses seasonally averaged daily tempera-
ture during 1931-1993 for 344 United States’ climate
divisions. The geographic distribution of the United
States’ climate divisions is shown in Fig. 1. In the anal-
yses, 17 climate divisions (shaded in the map) are ex-
cluded due to data-quality problems (Cayan et al.
1986), resulting in 327 climate divisions.

Suppose T;,i =1, - - -, n, is a time series of data for
a given climate division for a particular season at yearly
intervals for n years. A second series of backward-look-

ing averages T}, is constructed as follows:

-~ 1k
== Tijs (1)
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fork=1,2, ---,30 and for i = 31, 32, ---, n. For
data during 1931-1993, n = 63. The k-index represents
the number of years over which the climate average is
calculated. Climate means for each value of k are then
used to make forecasts of the upcoming year, and this
is done for each year from year number i = 31 (i.e,
1961) onward.

The skill of OCN to predict the upcoming year is
measured here by the correlation between the forecast
anomaly and observed anomaly during the verification
period of 1961-~1993. The correlation is defined as

3 T T
CORgep (k) = ————— . @
[Z (T])? = (1)
i=31 i=31
where
f'{ = Ti,k ~ Cwmo, k=1,30
T?b = T?b - Cwwmo, (2a)

where the referenced 30-yr mean (Cywyo) is defined in
Table 1, considering the situation in practice where the
official normals are updated every ten years with sev-
eral years delay (e.g., the 1961-1990 normal has been
used only after 1993). Later in section 5, we will dis-
cuss the difference in skill when using an annually up-
dated 30-yr normal as the reference.

The correlation defined in Eq. (2) is for dependent
data (hence COR,.,) because we searched for K, that
is, fitted the forecast model to the data to estimate one
parameter. Nowadays, a cross-validation (CV) method
is often used to establish expected skill on independent
future data. The CV method implies that each of the
years to be verified (which are 1961-1993) is held out
in turn when calculating the optimal K and then used
as the forecast target. However, in this case, because
of the configuration of the long set of predictor years
being immediately followed by the predictand year, a
CV test is not straightforward. In this paper, the de-
pendent correlation (CORy,, ) is lowered to account for
the shrinkage expected on independent data [see Eq.
(7) in Barnston and Van den Dool 1993 1]:

NCORgp 1 \
N-1 (N-DCOR,

for CORye, > 1/(N)'"* where N = 20 is the effective
sample size of the dependent verification during 1961 —
1993. (The reason for not using the original N = 33
will be given in section 7.) Unless stated otherwise, we
show COR,q., in the next sections.

Note that the anomalies are defined as the departures
from the WMO specified 30-yr average (Cwmo), and
thus skill is defined as the improvement over the skill
obtained when using the aging 30-yr mean as the fore-
cast. The optimal averaging time K is that k for which
the correlation is maximum in the dependent period.

CORindep =

HUANG ET AL.

811

TaBLE 1. Definition of WMO 30-yr normals (Cwmo)-

Year of verification ‘WMO specified 30 years

1961-1963 1931-1960 (1921-1950 unavailable)
1964-1973 1931-1960
1974-1983 1941-1970
1984-1993 1951-1980
>1993 1961-1990

There are other criteria for choosing an optimal K; they
will be discussed in section 4.

The method employed here to determine K is math-
ematically identical to that used by Harnack et al.
(1984), Roads and Barnett (1984), and Van den Dool
(1985), who, in the context of monthly forecasting,
sought to optimize the skill of the forecast for the next
month by persisting an average of the last K days of
the previous month. An important technical difference
between the climate normals approach and that used
for monthly forecasts in Van den Dool (1985) is that
in the former case the magnitude of the climate anom-
alies goes to zero as k goes to 30. This does not happen
in the monthly application.

This manuscript deals with only one special case:
using a K-year average to predict a single upcoming
year. The more general situation would be to use a K-
year average to predict an average over n years with a
lead of m years. Court (1967—-1968, part V) found that
the optimal period for predicting a single value m years
beyond the end of the averaging period is m years
shorter than for predicting the next year’s value, that
is, K-m. This is opposite to the experience in short-
term forecasting (Van den Dool 1985). In the latter
case, K tends to become larger as the future average
(n) increases and also as the lead (m) increases.

3. Spatial distribution of optimal averaging time

We have examined the spatial distributions of the
optimal averaging period K for 12 seasons shifted by
one month, but only show the standard four seasons
(MAM, JJA, SON, and DJF) in Fig. 2. The optimal
averaging period K is substantially less than 30 for all
seasons in almost all areas. In other words, the WMO’s
30-yr climatic normals are usually not the best predictor
for the upcoming year’s temperature for the given sea-
son. This result supports and further extends results
from the previous studies (e.g., Lamb and Changnon
1981; Dixon and Shulman 1984; Kunkel 1987).

The spatial distributions of K are different for dif-
ferent seasons, as found earlier by Court (1967-1968).
However, the pattern changes more or less smoothly
month by month, which can be seen in maps for all 12
seasons (only four are shown). In fall low K (K < 5)
values are found mainly in the western half of the coun-
try, while in winter K is lowest (K < 5; down to K
= 1) in the east. In southern Illinois in summer, me-
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FIG. 2. Spatial distribution of optimal averaging time K (in years) for climate normals for (a) MAM; (b) JJA; (c) SON; and
(d) DJF. Heavily shaded areas are for K < 5 and lightly shaded areas are for 5 < K < 15. Blank areas are for 15 < K < 30.

dium-term (5 < K < 15) averages have the most pre-
dictive information, which agrees with the results of
Lamb and Changnon (1981). The K parameter is a
crude measure of the spectrum of interannual variation
in temperature; that is, the timescale of variation. When
K is small there is marked year to year persistence. A
longer K might imply significant interdecadal varia-
tions in the climate. Interestingly, some similarity can
be seen with the results of the studies in long-range
potential predictability (Madden and Shea 1978; Mad-
den 1981; Shea and Madden 1990).

Figure 3 shows the correlation between the OCN
forecasts and the observations. The correlations are de-
rived using Eq. (2) and appropriately lowered by Eq.
(3). Only correlations greater than 0.3 are plotted, the
rest of the field is ‘‘masked out’’ to be blank. Because
skill is defined to show improvement over skill using
the WMO normal, generally higher correlation is most
likely found where the optimal K is much different
from 30, that is, much lower than 30 in our case.

4. Different criteria

" To measure the predictive accuracy of the climate
normals, several other reasonable criteria have been
proposed (e.g., Lamb and Changnon 1981; Dixon and

Shulman 1984; Kunkel 1987), besides the correlation
(COR). The optimal averaging period that produces
the minimum root-mean-square (rms) error has been
considered (e.g., Kunkel 1987). A mean absolute dif-
ference (ABS) between forecast and observation has
also been used (Lamb and Changnon 1981). Yet an-
other proposed method is, for each &, to count the num-
ber of times for which the k-year average makes the
best prediction, that is, has the smallest error for each
of the years to be verified. The optimal K is the one
with the highest frequency of being the best (Kunkel
1987).

To make a comparison, we have plotted in Fig. 4 the
three quantities, COR, rms, and ABS as a function of
k at several chosen climate divisions for JJA. The rms
error of Cwwmo is also plotted, which will be further
discussed in section 5. Here the COR shown is calcu-
lated from Eq. (2), that is, dependent correlation. The
result of the ‘‘frequency’’ method is not shown but will
be mentioned later. For each calendar season, we
picked three locations with K < 5, 5 < K < 15, and
15 < K =< 30, respectively, with the guidance of Fig.
2 and Fig. 3, the latter figure showing the locations
having skill. Because X is regionally consistent (Court
1967-1968), individual climate divisions are repre-
sentative. Figure 4 only shows the JJA season as an
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F1G. 3. Spatial distribution of the cross correlation (X 100) between the forecast (optimal normal) and the actual values for
(a) MAM; (b) JJA; (c) SON; and (d) DJF. Correlations smaller than 0.3 are not plotted. The contour intervals are 0.1.

example. Generally, COR is consistent with rms and
ABS; that is, small rms or ABS tends to correspond to
large COR, and vice versa. Near the optimum the cri-
terion often depends weakly on k (as found also by
Court). The optimal K values shown in Fig. 2 (partic-
ularly for Georgia and Nebraska) could thus easily be
altered by a few years by 1) changes in dataset (i.e.,
sampling variability ) or 2) using a different criterion.
By the same token, though, changing K by a few years
for a given criterion does not change the skill of the
forecast very much. We conclude that COR, rms, and
ABS all give essentially the same answer.

We found that the ‘‘frequency’’ method leads to very
short K (1 or 2 years) in most of the United States’
climate divisions in each season. This is presumably
due to the last 1- or 2-yr persistence of climate anom-
alies, which is seen quite often (Kunkel 1987). How-
ever, the other three methods rarely pick the shortest
periods to be optimal. In summer, for example, K is
nine in Georgia based on all three criteria. The differ-
ence between the ‘‘frequency’” method and the other
three methods has also been noted before (Lamb and
Changnon 1981; Kunkel 1987). Although persistence
of short-lived anomalies is important and a noteworthy
feature of the United States climate, a sudden change
in pattern can occur as well, which would result in a

large rms error for small K. Being conservative, we
prefer the COR, rms, or ABS criteria.

It has become conventional to use correlations to de-
scribe forecast skill at NCEP. The rms, ABS, and COR
are interrelated measures, as exemplified in Fig. 4. The
relationship between COR and rms is discussed for
standardized data in Barnston (1992) and in more gen-
eral terms in Murphy and Epstein (1989).

S. Difference between annually updated and aging
30-yr mean

The positive correlations shown in Fig. 3 indicate
that the annually updated climate normals averaged
over shorter than 30-yr periods have higher predictive
skill than the aging 30-yr mean. However, it is not clear
at this point whether the skill comes mainly from the
shorter averaging periods or from the annual updating.
In order to identify the source of the improvement in
skill, we compare the skill of OCN using two different
30-yr means as the reference: One is an annually up-
dated 30-yr mean, that is, T30 [see Eq. (1) for the
definition] (referred to as scenario I, which, we believe,
is used in most of the literature on OCN), and the other
is the aging 30-yr mean ( Cwmo) as defined in Table 1
(referred to as scenario II, which was used above and
also in practice) (O’Lenic 1994; Van den Dool 1994).
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FiG. 4. Three different criteria, rms error (short dashed line, unit:
degrees Celsius), absolute error (ABS, dotted line), correlation (COR,
solid line; unit: degrees Celsius), and rms error of WMO 30-yr nor-
al (long dashed line) as a function of averaging period k in (a) Texas
(JJA) with K < §; (b) Georgia (JJA) with 5 < K =< 15; and (¢)
Nebraska (JJA) with 15 < K < 30.

Figure 5 shows the spatially averaged correlation
over the United States as a function of season from NDJ
(season 1) to OND (season 12) for scenario I and sce-
nario II (see solid lines in both panels). (The spatial
average also includes all climate divisions with corre-
lations less than 0.3). The higher skill in scenario II
than in scenario I indicates that the skill of OCN is
partly due to the annual updating of the normals. The
positive sign of the correlation in scenario I suggests
that the skill also comes from using the shorter aver-
aging periods to calculate the optimal normals.
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In Fig. 4, the comparison of the rms errors of the
WMO 30-yr normal (long-dashed straight line), the
annually updated 30-yr normal (value of short-dashed
line at k = 30), and OCN (short-dashed line at K with
maximum COR or minimum rms) also show how
much of the skill of OCN comes from annually updat-
ing and how much comes from K < 30. The relative
importance of annual updating and smaller K varies of
course with location and season.

6. Long lead versus short lead; seasonality

In Fig. 5, the solid lines show the skill of short lead
forecasts, that is, when the optimal normals are calcu-
lated from immediately preceding K years. Forecasts
with this ‘‘short’’ lead can be issued from 0 to 9 months
ahead of time (see second to last paragraph of section
1 for more explanation ). In operational long-range sea-
sonal forecasts, even longer leads are needed. For ex-
ample, the CPC/NCEP is issuing since January 1995

Scenario |

0.4

‘\\ // —— Short Lead
. 4\// ------ Long Lead
2 3 4 5 6 7 8 9§ 1w 11 1
Season
Scenario ||
0.4
;'\\\
0.3 -

0.1

——— Short Lead
Long Leod

Season

FiG. 5. The correlation spatially averaged over United States as a
function of season from NDJ (season 1) to OND (season 12). The
top panel is for the case with the annually updated 30-yr mean as the
reference; the lower panel is for the case with the aging WMO 30-
yr mean as the reference. The solid line is for short lead (0 to 9
months) and the dashed line is for the longer leads (skipping one
year, that is, 10 to 21 months).



APRIL 1996

long-lead forecast with a lead time of up to 13 months
(O’Lenic 1994; Van den Dool 1994). Moreover, we
have to take into account the practicalities related to the
unavailability of recent climate division data in real
time.

Forecasts with the longer lead (10 to 21 months) are
made by skipping one year between the predictors and
the predictand. We found that the difference in skill
between the short lead and long lead is not very large
(dashed line in Fig. 5). This certainly implies that the
skill of OCN is not very sensitive to the lead time. In
other words, forecasts beyond one year are about as
skillful as those with shorter leads (Note that for long
leads, K may differ from the K for short leads).

The skill of OCN changes with season, as seen from
Fig. 5 and also from Fig. 3. Basically, the skill is higher
in summer and winter during the verification period
(1961-1993), especially under scenario II. The skill
is lower in transition seasons, particularly in fall and
early spring.

Scenario II is relevant to the operational forecasts. It
is interesting to note the skill maxima in late winter and
summer. This appears to be a feature of many forecast
methods (e.g., Barnston 1994).

7. Test on independent data

The correlations shown in Fig. 3 and Fig. 5 are a
proxy for cross-validated correlations obtained here
from the dependent correlation [Eq. (2)], lowered ac-
cording to estimated shrinkage expected on indepen-
dent data [Eq. (3)]. We follow this theoretical proce-
dure because it is not clear how to perform cross vali-
dation for OCN forecasts in the way it is done on a
regression-type forecast (Barnston and Van den Dool
1993). The shrinkage of the skill depends on the sam-
ple size and the correlation itself. The higher the de-
pendent correlation and the larger the sample size N,
the smaller the shrinkage. Given N = 20 in Eq. (3),
for example, COR 4, = 0.14 for COR,,, = 0.3, while
CORindep = (.42 for CORdep = 0.5.

Note that the N in Eq. (3) is the effective sample
size N, estimated to be 20 for 1961 -1993. We now
explain how we estimated N,. To determine N, we
first carried out an old-fashioned independent verifi-
cation for the 8-yr (1986—1993) period. The truly in-
dependent skill can be used in conjunction with the
dependent skill to estimate N, using Eq. (3). For each
verified season during 1986-1993, the optimal K and
the dependent skill are determined based on the data
ending one year before (e.g., to forecast a season in
1986, we use 19611985 as forecast targets to find the
K and to determine the dependent skill) for each cli-
mate division and season. Because there are only eight
years, we do the comparison by pooling data in space
and time. The dependent skill averaged over the eight
years and all seasons and all climate divisions is 0.35.
The actual skill (i.e., the correlation between the actual
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forecasts and the observed anomalies) is 0./9. In cal-
culating those correlations, forecast and verification
anomalies are divided by local standard deviations to
prevent the pattern correlation from being dominated
by climate divisions with large standard deviations.

We now estimate the shrinkage using Eq. (3). The
8-yr averaged dependent sample size N (N = 25 for
1961-1985, N = 26 for 1961-1986, etc) is 28.5, and
thus the estimated independent skill, using N = 28.5,
would be COR;,4; = 0.26 (rather than 0.19) given
CORy,, = 0.35. Apparently, Eq. (3) underestimates the
shrinkage when using the original sample size (28.5).
The likely reason is that the forecasts (i.e., K-year-av-
eraged seasonal climate normals) will be similar from
year to year especially when K is large. When forecast
skill is relatively high, the observations must also tend
to have some year to year persistence. We thus found
that the effective N should be about 17 in order to get
CORp4ep = 0.19. Thus, the ratio of effective N to orig-
inal N is about 0.60. Applying this ratio to N = 33 (for
1961-1993), we get the effective sample size N = 20,
which is used in Eq. (3) to produce Figs. 3 and 5. But
we have to remember that this correction is an approx-
imation based on 8-yr independent verification only.
Note that the same feature that makes OCN a success
(interannual persistence of anomalies) hinders in
showing OCN’s statistical significance.

In practice (Van den Dool 1994), forecasts will be
made only at locations that are known in advance to
have usable skill. When including only climate divi-
sions with dependent correlations [Eq. (2)] of at least
0.4, the annually averaged skill for the eight indepen-
dent years becomes 0.30 (0.58, 0.10, 0.43, and 0.38 for
MAM, JJA, SON, and DIJF, respectively). The shrink-
age of 0.4 down to 0.3 is consistent with N, = 20.

An alternative test on independent data is to use the
K-values that are optimal for long leads for short-lead
forecasts. The similarity in skill for short and long leads
(see Fig. 5) and particularly the similarity of the K-
values for short and long leads points to robust results.
In this case we can use the entire 1961-1993 dataset.
For the short-lead forecasts the dependent COR, an-
nually averaged, equals 0.34. When using the K optimal
for the long lead, this short-lead skill drops to 0.24.
This drop is quite consistent with the shrinkage ap-
proach above and suggests that N = 20 for 1961-
1993 is a very reasonable estimate.

8. Practical considerations in operational forecasts

When applying OCN in practice we encountered
several new problems that led us to reconsider some of
its design aspects for operational forecasts. The prob-
lems had to do primarily with the temporal continuity
and spatial consistency of OCN forecasts. Above we
made the point that skill of OCN does not depend too
much on the precise value of K, that is, particularly
when optimally K = 4, k = 3, or k = 5 will still give
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nearly the same skill. That may be true, but the forecast
itself does change a lot. We were thus faced with abrupt
changes in forecast at the same location when going,
for example, from DJF to JFM. A similar problem ex-
ists in space. Even though K is regionally consistent
and skill has regional scales, the forecast itself is sen-
sitive to K when X is less than about five. This leads
to hard to accept positive and negative forecast anom-
alies side by side on a map for the same target season.

Variable K is obviously not always a blessing. To be
conservative and simple in practice, we recalculated a
single K value for all 12 seasons and all 327 CDs com-
bined. The COR for this grand sample is shown as a
function of k (Fig. 6a). The results are very telling.
Using K = 30 always and everywhere explains most of
the gain over using WMO normal (COR = 0.24).
Since we are fairly confident that the optimal K is
shorter than 30, we pick K = 10 (although K = 23
would do nearly as well) and so raised the COR to 0.28.
Because of the large sample used, there should be neg-
ligible difference here between dependent and inde-
pendent sample results. Figure 6b shows the skill of
OCN (CORGgep) during 1961-1993 for variable X (i.e.,
optimal K) and K = 10. The skill of OCN (optimal K)
is of course higher, but this may be mostly sampling.
For now we sacrifice the option of variable K, because
(a) it helps relatively little, (b) it is difficult to cross
validate the results (see section 7), and (¢) it leads to
problems in real-time forecasts.

Operational methods should preferably be reliable in
the sense that their skill should not vary wildly. While
the skill in Fig. 6b is far from constant, there are only
five (out of 33) years where COR < 0. Generally 0.1-
0.3 is to be expected. We note with interest in Fig. 6b
is that the skill of OCN is considerably higher during
the 1960s featuring COR = 0.5 averaged over all sea-
sons and all locations. Also, 1991-1992 featured high
skill, but 1993 had COR = 0. It would in interesting to
investigate why.

9. Summary and discussion

This study has examined seasonal temperature data
at 344 U.S. climate divisions during the period of
1931-1993. The purpose is to determine the spatially
varying optimal time periods for climate normals over
the United States when the normals are used as fore-
casts for the same season in the following year and the
year after. The skill is measured by the correlation be-
tween the predicted and observed anomalies. The skill
is defined as the improvement over the WMO specified
30-yr normal (updated only every 10 years). While this
method appears merely to ‘‘beat the system,’’ it is fair
because it formulates forecasts precisely in the way
done by other methods and expected by the operational
community. The optimal time periods are chosen to
maximize the skill in predicting the target season in the
upcoming year. The use of OCN to predict the next
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FIG. 6. (a) The correlation averaged for all seasons and all climate
divisions as a function of K for short lead. (b) The skills of OCN
during 1961-1993 for K = 10 (solid line) and optimal K (dashed
line).

year’s temperature for a given season provides a fore-
cast with a lead time of almost one year.

The results indicate that for almost all seasons and
locations annually updated climate normals averaged
over shorter periods are better than the WMO specified
30-yr normal, in terms of the skill in seasonal temper-
ature prediction in the upcoming year. The improve-
ment in skill is contributed by both using shorter av-
eraging periods and annual updating. The spatial pat-
terns of the optimal averaging time periods (K) change
smoothly with season. The details of the spatial and
seasonal variations in K certainly contain sampling er-
ror. On the other hand, the forecast skill is not terribly
sensitive to changes in K by a few years.

The correlation obtained from the dependent verifi-
cation is lowered to take account of the degradation
expected on independent data. This correction incor-
porates an estimation of the effective sample size and
the dependent correlation. Two independent tests are
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conducted in this study. The first one is to use the pe-
riod of 19611985 to estimate K and to use the period
of 1986—-1993 as the verification period, which is used
to lower the dependent correlation. The second method
is to use the K optimal for the long lead when making
short-lead forecasts. It allows to use the entire 1961—
1993 for verification and the shrinkage is consistent
with the other independent test.

Forecasts beyond one year have been found to be
about as skillful as those with shorter leads. It is found
that the optimal K by pooling all seasons and locations
is 10 for the short lead and 9 for the long lead, that is,
K is one year smaller when predicting one year beyond.
This confirms Court’s finding (1967-1968 ) mentioned
at the end of section 2.

The skill of OCN changes with season. The skill is
higher in summer and winter, based on the verification
during 1961-1993. The seasonality of the skill could
be different for some other periods. As discussed in
section 7, for example, the skill was the highest in
spring for 1986-1993.

For precipitation we also found climate normals over
shorter periods to have higher predictive skill than the
30-yr average (not shown). However, the optimal av-
eraging periods have spatial patterns different from
those for temperature (especially in summer), and the
skill is lower. We plan to try using the median instead
of the mean for the precipitation study, as suggested by
Court (1967-1968).

The optimal normals could be determined by differ-
ent criteria proposed in literature. Methods based on
COR, rms, or ABS show similar characteristics, while
the “‘count’” method (Kunkel 1987) tends to choose
the shortest period to be optimal.

Included in our OCN forecasts are also unknown
nonmeteorological features, such as artificial changes
in measurements. For example, if a thermometer sud-
denly acquired a 10°C positive bias, K would soon be-
come very small.

In practice we found a variable K to be problematic
and, for the time being, settled for a constant K for all
seasons and locations (K = 10 for temperature and K
= 15 for precipitation).
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